1引言對于SPWM三相半橋式逆變器,由于開關管固有開關時間ts的影響,開通時間ton往往小于關斷時間toff,因此容易發生同臂兩只開關管同時導通的短路故障。為了避免這種故障的發生,通常要設置開關死區△t,以保證同橋臂上的一只開關管可靠關斷后,另一只開關管才能開通。死區的設置方式有兩種:一種是提前關斷、延滯開通的雙邊對稱設置;另一種是按時關斷、延滯△t開通的單邊不對稱設置。典型的電壓型三相SPWM半橋式逆變器如圖1(a)所示。其中圖1(b)是死區對稱設置時的波形圖;圖1(c)是死區不對稱設置時的波形圖。在這兩種波形圖中,uAO為相與直流電源中點“0”之間的理想電壓波形(載波比),uAO′為設置死區時的電壓波形。
在感性負載時,當V1導通時A點為,當V4導通時A點為。在死區△t內V1和V4都不導通時,感性負載使D1和D4續流以保持電流iA連續。當iA為正時D4續流,A點與直流電源負極接通,A點電位為;當iA為負時D1續流,A點與直流電源正極接通,A點電位為,這樣就產生了誤差電壓uD1.4。uD1.4與uAO′疊加就產生出實際輸出電壓uAO″。比較uAO″與uAO可知,實際輸出電壓發生了畸變。在iA為正時所有正脈沖寬度都減小△t,所有負脈沖寬度都增加△t;在iA為負時所有負脈沖寬度都減小△t,所有正脈沖寬度都增加△t。這是由死區△t內的二極管續流造成的,畸變后的實際輸出電壓波形如圖中uAO″所示。
2實際輸出電壓uAO″的諧波分析
假定載波與調制波不同步,則在調制波各周期中所包含的脈沖模式就不相同,因此不能用調制波角頻
(a)電路圖
(b)死區雙邊對稱設置時的波形圖
圖1有死區的三相半橋式SPWM逆變器
(c)死區單邊不對稱設置時的波形圖
率ωs為基準,而應當用載波角頻率ωc為基準。這樣,研究它的基波與基波諧波、載波與載波諧波及其上下邊頻的分布情況時,就能很方便地用雙重傅立葉級數來表示:2.1死區雙邊對稱設置時uAO′的諧波分析
如圖1(b)所示,uAO′相當于二極管不續流時輸出電壓的波形。載波三角波的方程式為:正弦調制波的方程式為:
對于理想波uAO,二階SPWM波正脈沖前沿(負脈沖后沿)采樣點a為:令x=ωct;y=ωst;,則可得
二階SPWM波負脈沖前沿(正脈沖后沿)采樣點b為:
圖2uAO′與uD1.4的向量相加和uAO″、uAO′、uD1.4的向量關系
對于圖1(b)中uAO′,在x=ωct的2πk-到2π(k+1)-區間內,可以得到二階SPWM波的時間函數為:
,k=0,1,2,3…
經分析可以得出:uAO′=sinωst+Jo()cosm·
sin(mNωst)-Jn()[cos(m+n)π-1]
cosmsin[(mN+n)ωst](2)
2.2對死區雙邊對稱設置時uD1.4的諧波分析
圖(1)b中誤差波uD1.4,其雙重傅立葉級數中的(3)
對于載波及載波m次諧波的上下邊頻:;Bmn=0
2.3死區雙邊對稱設置時uAO″的諧波分析
由圖1(b)可知,實際波uAO″等于有死區波uAO′與誤差波uD1.4之和。由于死區是雙邊對稱設置,所以uAO′與調制波uS相位相同,電流iA滯后于uAO′一個φ角,而誤差波uD1.4又與iA相位相反,因此,uD1.4的相位超前于uAO′180°-φ,如圖(2)所示。因此,當以uAO′的相位為基準時可得:
uAO″=uAO′0°+uD1.4180°-φ(5)uAO′與uD1.4的基波幅值uAO(1)′=;
,由圖(2)可知:uAO″的基波幅值
UAO(1)″的初相位角
(6)
2.4死區單邊不對稱設置時uAO″的諧波分析對于圖1(c),由于死區是不對稱設置,即只在脈沖前沿設有死區△t,故uAO′滯后于調制波us的相位角為。但當以uAO′的相位為基準時,uAO″、uAO′、uD1.4的相位關系與對稱設置時相同,故按著與前面相同的方法可以得到:
uAO″=uAO′0°+uD1.4180°-φ(7)
3死區對輸出電壓波形影響的分析
無死區理想波uAO的雙重傅立葉級數方程式,可以用方程式(2)令△t=0得到:當死區雙邊對稱設置時,理想波uAO與實際波uAO″之間的偏差電壓udev由圖1(b),可知:
udev=uAO0°-uAO″φ′
偏差電壓udev的相位與電流iA相同,與誤差電壓uD1.4相位相反。
udev=uAO0°-uAO′0°-uD1.4180°-φ(9)
將方程式(6)、(7)與方程式(8)比較可知,死區對輸出電壓的波形存在著明顯的影響,影響的大小與死區△t的值和載波比N有關。
圖3死區△t對基波幅值的影響
圖4載波比N對基波與諧波的影響
●死區△t的影響:空載時二極管不續流,死區對輸出電壓影響不大,感性負載時二極管續流產生誤差波uD1.4,使輸出電壓基波幅值減小,相位超前φ′角,并出現了幅值為的3、5、7……次諧波,死區△t越大,這種影響越大。
●載波比N的影響:方程(6)、(7)中的ωc=Nωs,所以當N增大時,輸出電壓基波幅值的減小和3、5、7……次諧波的增大更嚴重。輸出電壓uAO″方程中產生的3、5、7……次諧波,隨著N的增大而上升;而uAO″中的載波下邊頻產生的3、5、7……次諧波,隨著N的增大而減小。因此,輸出電壓uAO″中3、5、7……次諧波的總和,隨著N的增加呈現出先減小而后增大的變化,中間有一個使3、5、7……次諧波含量為最小的最佳載波比N。這就打破了SPWM逆變器隨著N的增大而使低次諧波含量減小的傳統理論。
4計算機輔助分析和實驗曲線
4.1死區△t對輸出電壓基波幅值的影響
圖(3)給出了輸出頻率為40Hz、M=0.8、N=15、cosφ≈1和cosφ=0.8時基波幅值與死區△t的關系曲線,可以看出隨著△t的增大基波幅值下降,當cosφ≈1時基波線性下降。
4.2載波比N對輸出基波電壓和3、5、7……次諧波的影響
圖(4)給出了輸出頻率為40Hz、M=0.8、△t=40μs、cosφ=0.8時基波幅值和3、5、7……次諧波幅值與載波比N的關系曲線,可以看出隨著N的增大基波幅值大幅度降低,當N=99時基波幅值降低到理論值的37%;隨著N的增大,3、5、7……次諧波的幅值先是下降,當N>15時開始顯著上升。對于3次諧波,當N=9時為最小,當N>9時隨著N的增加顯著上升,當N=99時上升到基波理論值的21%。由此圖可知N=15時是最佳載波比。
5結語
在SPWM逆變器中,設置死區△t對輸出電壓波形有明顯的影響:
(1)使輸出電壓基波幅值減小,并產生出與△tN成正比的3、5、7……次諧波。
(2)對于有死區的SPWM逆變器,隨著載波N的增大,輸出電壓uAO″中的3、5、7……次諧波幅值先是減小,當N>15以后顯著增大。不像傳統理論中所說的,隨著載波N的增大,低次諧波含量將逐漸減小的結論。(3)對于變頻調速系統,當電機低速運行時ωs減小,使載波比相應增大,因此△t與N將使基波幅值減小,和3、5、7……次諧波增大的影響更加嚴重,在這種情況下,為了保證電機的正常運轉,必須對死區的不良影響進行補償。