《電子技術應用》
您所在的位置:首頁 > 可編程邏輯 > 設計應用 > FPGA實現OFDM水聲通信系統定時同步
FPGA實現OFDM水聲通信系統定時同步
EEworld
摘要: OFDM系統自身的正交多載波調制特點,決定了其對同步誤差十分敏感。能否實現準確的符號定時同步和載波頻率同步,將直接影響到OFDM通信系統的性能。由于線性調頻(Linear Frequency Modula-tion,LFM)信號具有良好的時頻聚集性,使得LFM信號適合作為OFDM水聲通信系統的定時同步信號。在接收端,利用LFM信號的自相關特性檢測其相關峰的位置,可以實現OFDM水聲通信系統的定時同步。.
關鍵詞: FPGA OFDM 水聲通信
Abstract:
Key words :

引 言

  正交頻分復用(Orthogonal Frequency Division Multiplexing,OFDM)技術是一種多載波調制技術,它將寬帶信道分解為相互正交的一組窄帶子信道,利用各個子信道進行并行數據傳輸,因此其頻譜利用率高、抗多徑衰落能力強。

  OFDM系統自身的正交多載波調制特點,決定了其對同步誤差十分敏感。能否實現準確的符號定時同步和載波頻率同步,將直接影響到OFDM通信系統的性能。由于線性調頻(Linear Frequency Modula-tion,LFM)信號具有良好的時頻聚集性,使得LFM信號適合作為OFDM水聲通信系統的定時同步信號。在接收端,利用LFM信號的自相關特性檢測其相關峰的位置,可以實現OFDM水聲通信系統的定時同步。
 

  1 基本原理介紹

  1.1 OFDM水聲通信系統原理

  典型的OFDM水聲通信系統原理框圖如圖1所示。

  

典型的OFDM水聲通信系統原理框圖

 

  輸入的數據符號經過DQPSK映射成一個復數數據序列X[O],X[1],…,X[N一1],經過串并轉換后將N個并行符號調制到N個子載波上,經過IFFT后成為時域抽樣值x[n]:

  

 

  再經過添加循環前綴(Cyclic Prefix,CP)、插入LFM同步信號、D/A轉換等步驟,最后經水聲換能器轉換成聲信號在水聲信道中傳輸。在接收端,信號經接收換能器轉換成電信號,經信號調理以及A/D采集、FFT等一系列逆過程,即可完成數據符號的解調。

  為了正確恢復數據符號,本系統利用LFM信號較好的自相關特性,將其作為OFDM符號的定時同步信號。OFDM水聲通信系統發送信號的幀結構如圖2所示。在接收端采用滑動相關檢測的方法,獲得相關峰的位置,實現定時符號的準確同步,然后經過發送端的逆過程即可實現OFDM信號的解調,最后恢復出原始的數據符號。

  

 

  1.2 LFM信號的特點

  LFM信號是雷達系統中應用極為廣泛的一種大時寬一帶寬信號。LFM信號的復數表達式為:

  

 

  其中:μ=B/r為頻率的變化斜率,B(=△f)為頻率變化范圍。實信號表示為:

  

 

  其時域波形和自相關輸出如圖3所示,可以明顯看出LFM信號的頻率在脈沖周期內按線性規律變化,自相關峰是非常尖銳的。

  

 

  LFM信號具有拋物線式的非線性相位譜,且Bτ》1,τ為信號時寬,B為信號帶寬。因此LFM信號具有很好的脈沖壓縮特性。它的模糊函數(自相關函數)曲面具有尖銳的主峰和較低的裙邊。它對多普勒頻移不敏感,即使存在較大的多普勒頻移,它仍具有良好的脈沖壓縮特性。水聲信道具有強多途、時、空、頻變的特性,采用LFM信號作為同步信號,可以獲得較好的相關檢測性能,不會由于多途帶來明顯的偽峰。經過實驗,驗證了LFM信號作為系統的同步信號可以獲得較好的同步性能。因此本文重點討論LFM信號在FPGA上的產生和同步檢測。

2 LFM信號的產生和檢測

 

 

  2.1 LFM信號的產生

  LFM信號的產生方法通常有I,Q兩路數字式產生法和中頻直接產生法兩種。前者實現時較復雜,適用于頻率高、帶寬大的場合。水聲信號一般工作在較低頻段,適合用中頻直接產生法產生LFM信號。根據本實驗室OFDM水聲通信系統的可用帶寬要求,利用直接數字合成(Directed Digital Synthesis,DDS)技術直接產生掃描頻率為13~16 kHz的LFM信號。

  DDS技術又可進一步分為直接數字波形合成(DDWS)和直接數字頻率合成(DDFS)兩種,二者在實現結構上略有不同。DDWS也稱為數字波形存儲直讀式波形產生系統,它把經過理想采樣的數字波形預先存儲,使用時通過查表進行D/A變換而得到所需的模擬信號。該方法產生的LFM信號基本上不受調頻斜率的限制,可以用來產生任意波形(包括復雜波形及大數據量組合波形),還可對預先存儲的數據波形進行預失真處理,提高系統的性能。本設計采用DDWS方式產生LFM信號,產生LFM的基本原理框圖如圖4所示。

  

DDWS產生LFM的基本原理框圖

 

  在50 MHz主時鐘的控制下,FPGA內部邏輯以120 kHz的頻率控制LFM信號的輸出,數字信號經過D/A變換后輸出階梯形的時域信號,再經過帶通濾波器濾除帶外噪聲后得到雙極性的LFM信號。

  2.2 LFM信號的檢測

  接收端對LFM同步信號的檢測,實質上是獲得LFM信號的壓縮窄脈沖的過程,以此達到同步信號提取的目的。采用的方法一般有匹配濾波法和相關提取法,匹配濾波的實現需要在頻域利用FFT和IFFT變換進行處理,它需要耗費較大的FPGA資源,復雜度較高。考慮到硬件資源和計算復雜度,本設計采用在時域滑動相關的方法實現LFM信號的檢測。該方法利用了LFM信號具有尖銳的自相關特性,根據相關運算的公式:

  

 

  當接收到的LFM信號與本地存儲的LFM信號相同時(上式中j=0)。其相關值最大,出現尖銳的相關峰。圖5是采用FPGA實現LFM信號相關算法的原理框圖。

  

 

  在發送端,一個周期LFM信號的點數為256,在接收端經過A/D采樣后得到8 b的數字量,存人長度為256 B的接收緩沖區,該緩沖區設計為先進先出(First-in First-out,FIFO),作為滑動窗與本地相關序列進行相關運算。本地相關序列(存放在ROM中)與發送端發出的LFM序列相同,ROM的容量也是256×8 b。

  每完成一次A/D采樣,得到的8 b數據存入FIFO,然后執行一次相關運算,得到256個16 b的數據,然后將這256個數據相加,即得到此時刻對應的相關值(用24 b存儲)。對得到的連續256個相關值構成的序列處理后求最大值,即可判決出接收到LFM信號的位置。

3 實驗結果

 

  為驗證LFM信號在水聲通信中用作同步信號的性能,在實驗室水池進行了相關實驗。實驗中使用的FPGA為CycloneⅡEP2C20Q240C8,考慮到半雙工通信的情況,LFM信號的產生與檢測在同一片FPGA中實現,共使用了3 693個邏輯單元(Logic:Elements,LE),占EP2C20芯片總LE的20%。實驗系統的基本框圖如圖6所示。

  

 

  圖7的示波器型號為TDS2024,各通道觀測的信號如下:

  CHl為發送端發出的LFM信號。由于D/A輸出的信號經過帶通濾波器濾波,因此信號的高頻和低頻部分有衰減。

  CH2為接收信號(換能器輸出的信號經過5 000倍放大和帶通濾波處理后)。

  CH3為接收端FPGA檢測到LFM信號后的同步脈沖輸出。

  

 

  由圖7可以看出:該方案實現了LFM信號的產生,在多徑較為嚴重的實驗室水池中,在接收端正確完成了對LFM信號的同步檢測,可以較準確地提取到LFM信號的相關峰位置,證明該方法作為OFDM水聲通信系統的定時同步方案是可行的。

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 97国产精品欧美一区二区三区 | 日韩成人三级 | 国产v在线播放 | 免费人欧美成又黄又爽的视频 | 在线日韩三级 | 国产精品极品美女自在线看免费一区二区 | 性生活视频网 | 2020夜夜操 | 日本在线观看不卡免费视频 | 亚洲精品免费观看 | 一级特黄国产高清毛片97看片 | 狠狠色狠狠综合久久 | 日韩特黄特色大片免费视频 | 97影院理伦在线观看 | 私人毛片免费高清影视院丶 | 日本三级网站 | 久久91精品国产91久久小草 | 久久久成人啪啪免费网站 | 亚洲国产二区三区 | 国产免费一区二区三区免费视频 | 免费一区二区三区四区五区 | 国产一级小视频 | 亚洲一区二区三区高清视频 | 久久久网站 | 一级毛片观看 | 性盈盈影院影院 | 欧美日韩性视频一区二区三区 | 91资源在线观看 | 国产午夜精品久久理论片小说 | 国产精品欧美一区二区三区 | 国产成人精品免费视频大全五级 | 一区二区三区视频在线观看 | 国产精品久久久久一区二区三区 | 国产成人综合欧美精品久久 | 欧美一级高清免费播放 | 91国内视频在线观看 | 亚洲国产综合久久精品 | 亚洲国产精品欧美日韩一区二区 | 可以看毛片的网站 | 男人的天堂2018 | 国产综合成人久久大片91 |