文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.2015.10.013
中文引用格式: 魯琳琳,賈豫東,張曉青. 壓電陶瓷驅動電路RC網絡補償技術研究[J].電子技術應用,2015,41(10):52-54.
英文引用格式: Lu Linlin,Jia Yudong,Zhang Xiaoqing. Research on compensation technology of piezoelectric ceramic driving circuit RC network[J].Application of Electronic Technique,2015,41(10):52-54.
0 引言
壓電陶瓷(Piezoelectric Ceramic Transducer,PZT)是容性負載,驅動PZT時,驅動電路輸出電阻和容性負載會在運放傳遞函數上產生一個極點導致驅動電路工作不穩定。為使PZT驅動電路能長期穩定的工作,需要對集成運放電路進行相位補償來提高放大電路的穩定性。補償的方法有多種,如超前滯后補償[1],環路外補償、環路內補償[2-3],噪聲增益補償[2-4],隔離電阻補償[5-6]、雙通道隔離反饋補償[6-7]和外接RC網絡補償[8-9]等方法。但超前滯后補償法是以犧牲放大器的帶寬為代價的;環路內補償要求負載電容必須為已知常數,而不同PZT靜電容不可能是相同的;噪聲增益補償會使輸入端電壓噪聲和輸入失調電壓被放大產生附加的輸出電壓;采用雙通道隔離反饋回路時,會出現“BIG NOT”現象,導致增益的驟增對電路造成負面影響[10]。由于以上缺陷的存在,PZT驅動電路的長期穩定工作問題無法得到有效解決。
環路外補償和隔離電阻補償基本原理一樣,都是在運放的輸出端和負載電容之間串入一個電阻;外接RC網絡補償是對有補償端子的運放在相應的補償端子處外接補償電阻和電容,具有電路簡單、能有效提高電路性能等優點,在PZT驅動電路設計中普遍采用該方法。
1 驅動電路理論分析及仿真
1.1 模型的建立
運放反向放大電路和其等效電路模型如圖1所示。理想運放的開環增益應為無窮大,實際的運放開環增益是有限的并且具有頻率特性,增益的大小與信號的頻率有關。
由圖1(b) 運用結點分析法:
由式(3)可知,其傳遞函數與運放開環增益A有關。
1.2 容性負載電路模型及仿真分析
用PA88驅動容性負載時,等效電路如圖2(a)所示,并由此得到傳遞函數模型如圖2(b)所示。可得其開環傳遞函數如式(4)。
不驅動容性負載時,由式(3)得其開環增益Go=AF,F=-Rf/R1。通過上述分析知PA88驅動容性負載后開環增益曲線上會增加一個極點,且極點為fP=1/2πRoCL,PA88的輸出電阻Ro=100 。仿真得到幅頻響應和相頻響應如圖3所示。由圖可知增加一個極點,相位裕度減少了45°,這是導致電路不穩定的主要因素。
穩定的負反饋放大電路:Gm<0,而且|Gm|愈大,電路愈穩定;φm>0,而且φm愈大,電路愈穩定;其中Gm為幅值裕度,φm為相位裕度[11]。因此,對驅動容性負載的電路進行相應的相位補償可提高電路的穩定性。
2 相位補償設計
2.1 隔離電阻補償
極點的引入會破壞電路穩定性,而零點的引入有利于電路的穩定性。在電路輸出和容性負載間加入合適的隔離電阻也可以改善電路的穩定性,圖4為加入隔離電阻的等效電路和對應的傳遞函數模型。經分析,開環傳遞函數曲線上會增加了一個極點fP=1/2π(Ro+R2)CL和一個零點fZ=1/2πR2CL。零極點靠的很近,補償將不起作用,一般讓零點與極點之間有4~5倍的頻程。取fZ=4.5fP,于是R2=28.6 。由圖5知,加入隔離電阻后電路穩定性提高,并且帶寬也展寬了。
2.2 外接RC網絡補償法
PA88引腳中有相應的補償端子,可以用補償端7和8引腳,組成RC補償網絡。因此在PA88構成的PZT電路中合理設計補償電阻和電容的值可以避免運放產生寄生振蕩。根據實際的需求設計如圖6所示的驅動電路,R6和C2為補償網絡,電路的放大倍數為10。圖7是仿真得到的不同C2值的幅頻響應。由圖7知:隨著C2值的增大,電路的穩定性越好,但是帶寬有所降低。結合實際應用,C2取33 pF時驅動電路的性能最佳。
3 結論
本文主要采用外接RC網絡補償法對PZT驅動電路進行相位補償,解決了驅動電路不能長期穩定工作的問題。通過建立運算放大器電路的開環增益模型,仿真分析了隔離電阻補償和外接RC網絡補償中補償參數對電路穩定性的影響。根據實際需求,對基于PA88的PZT驅動電路設計了外接RC補償網絡。結果表明,當驅動電路的放大倍數為10時,補償電容值約為33 pF,電路的性能達到了最佳。文中采用的相位補償分析方法,對設計其他運算放大器的相位補償也有很好的指導作用。
參考文獻
[1] 魏福立.優化高速運放的穩定性[J].半導體情報,1999,36(3):41-43,50.
[2] 隋曉紅,石磊.運算放大器容性負載驅動問題研究[J].煤礦機械,2003(3):37-39.
[3] 呂超,焦斌亮.運算放大器容性負載問題及其解決方法[J].電子技術,2008(2):77-79.
[4] 黃春,汝長海,葉秀芬,等.基于補償技術的寬頻帶壓電陶瓷驅動電源[J].壓電與聲光,2009,31(3):373-376.
[5] 王軍,周國平.高速控制系統運放電路穩定性研究[J].制造業自動化,2012(21):91-93.
[6] 李江龍.壓電陶瓷驅動電源及其控制系統的研究[D].哈爾濱:哈爾濱工業大學,2012:21-25.
[7] 劉向東,傅強,賴志林.多單元浮地級聯式壓電陶瓷執行器高壓驅動電源[J].光學精密工程,2012,20(3):597-606.
[8] 陳杰.壓電陶瓷驅動電源及應用研究[D].南京:南京航空航天大學,2012:43-44.
[9] 王永紅,王碩,馬蛟,等.壓電陶瓷微位移器及其驅動電源的研制[J].實驗室研究與探索,2013,32(12):68-71,156.
[10] Tim Green.運放穩定性(1-10部分TI)[OL].2005,8:188-207.
[11] 童詩白,華成英.模擬電子技術基礎[M].北京:高等教育出版社,2006.