《電子技術應用》
您所在的位置:首頁 > 嵌入式技術 > 業界動態 > 機器人正學習使用自己的語言交流

機器人正學習使用自己的語言交流

2017-03-24

硅谷,聊天機器人是當下熱點之一。像許多人工智能研究者一樣,Igor Mordatch正致力于構造一種能夠彼此交流的機器。但是Mordatch并不是語言學家。他不直接處理人工智能中關于語言的問題。在他成為人工智能研究者之前,他是一名動畫師。他曾在皮克斯工作,參與制作了《玩具總動員3》。工作之余,他在斯坦福和華盛頓大學負責教會機器人像人類一樣運動。“我以前就對教會機器人運動感興趣,”他說。如今,所有的知識技能正以不尋常的方式到來。


Igor Mordatch出生于烏克蘭長在多倫多,現年31歲的他如今是OpenAI的訪問學者。OpenAI是由特斯拉公司的Elon Musk和YC的Sam Altman一同創建的人工智能實驗室。在這里,Mordatch正在探索著一條全新的道路,他想要讓機器不僅能和人對話,還能彼此交流。他建立了一個虛擬世界,在這里機器人必須學會創建自己的語言。


OpenAI發布的一份研究報告顯示,Mordatch和他的同事創建了一個虛擬世界。在這里機器人負責完成某些特定的任務,比如移動到某個特定的位置。這個世界很簡單,就是個巨大的白色正方形。在這二維世界里機器人也只是簡單的紅綠藍的圓。但事實比看起來要復雜,機器人需要借助自己創造的語言相互指揮,配合著完成任務。

這一切都是建立在強化學習的技術上。這種技術也被谷歌用來構造AlphaGo——谷歌DeepMind人工智能實驗室借此在圍棋領域獨孤求敗。簡單來說,機器人通過不斷試錯來為彼此指引方向,不斷跟蹤著指令的最終效果。如果某個指令成功幫助它們達成目標,那它們就會知道指令有效并繼續沿用。通過這樣的方式,機器人學會建立自己的語言,告訴彼此如何更快地抵達目標。

正如Mordatch所說,“我們判斷機器人的會話是否有效就看它們有沒有到達某個特定的目標。”

為了讓機器人能夠建立自己的語言,它們被分配了隨機而抽象的字符串,以便它們在虛擬世界中給彼此指引方向時能夠簡化要學習的概念。它們給彼此分配虛擬世界中的目標,然后執行諸如“到達某個目標”和“觀察某個目標”的指令。Mordatch和他的同事希望,隨著機器人語言的復雜化,相應技術能緊跟其后將其翻譯成英語等人類能理解的語言。這個過程會很漫長——至少要有一個能實際應用的翻譯軟件——但另一名OpenAI的研究員已經開始著手研究這類翻譯型機器人。

最后,Mordatch表示,他的方法能教會機器人更深入地理解語言,告訴它們語言存在的意義——這也為后期進行真正的會話搭建了跳板,有朝一日實現科學家夢寐以求的人機對話。

Mordatch的方法不同于其他人工智能語言研究方法。如今,頂尖研究者們大多在模仿人類語言而不是創造新的語言。例如他們的工作集中于深度神經網絡。近些年來,深度神經網絡——一種通過在海量數據中尋找統計模式來學習任務的復雜數學系統——已經被證實在照片識別、手機語音控制等方面的高效性。如今,谷歌、Facebook和微軟的研究員正在將類似的方法應用于語言理解上,試圖識別英語會話的模式,但目前收效甚微。

3afa44818b54f1736156b75e95a7b3d0.jpg


Mordatch和他的同事,包括OpenAI的研究員和加州大學伯克利分校的Pieter Abbeel教授,他們對尋常方法心有疑慮,所以開辟了一條不一樣的道路。他們的論文中這樣寫道:“要讓機器和人類智能地交互,依靠統計模式是非常低效的。機器在它所處的環境下學會應用語言(以及其他不依賴聲音的物理語言)解決問題時,才能很好的理解人類語言”。

對早期人類來說,語言的產生是一種必然。人們學會交流是因為語言幫助他們處理問題,使他們超脫于動物。這些OpenAI的研究員們想要讓機器人遵循此道。在機器人的虛擬世界中,機器不止學習自己的語言,他們也學習簡單的手勢和行動來交流——例如,指明特定的方向,或者指引他們從一個地方到達另一個地方——就像小嬰兒所做的那樣。這也是語言的一種形式。

也有很多研究者認為,借助深度神經網絡通過統計模式識別來研究語言也是有效的。Saleforce公司的人工智能研究員Richard Socher,也是OpenAI團隊的一員,他說:“Mordatch的方法本質上也是在使用統計模式,但他是在一個更簡單的人工環境下。在這樣有趣的新領域有所進展是非常好的,但并沒有論文里說的那么夸張。”

eeda56d82fa80a965a8ab0d13e2eeb44.jpg

雖然如此,Mordatch的項目表明分析海量數據并不是唯一出路。機器系統也可以從自己的行為中學習并強化。OpenAI的其他研究員們搞了一個更大的虛擬世界,他們稱之為“宇宙”。在這里機器人學習使用常用軟件,比如網頁瀏覽器,這也是通過一種強化學習的方式。對于OpenAI的創辦者Ilya Sutskever來說,這樣安排團隊最終是用來幫助研究語言理解。一個人工智能只有在理解人類自然語言時才能上網。與此同時,微軟也在通過強化學習的其他形式來研究語言,斯坦福大學的研究者也不例外,他們也正探索自己的方法研究機器人之間的協作。

最后,成功很可能來自于所有技術的綜合,而不是某一種技術。Mordatch提出的新思路——機器人不止學習如何交流,還學會用自己的語言交流,正像我們人類所展示的那樣,這是個很有力的創想。


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:[email protected]
主站蜘蛛池模板: www.欧美xxxx| 一本大道香蕉久在线不卡视频 | 亚洲欧美日韩综合在线一区二区三区 | 日b毛片 | 日本一级毛片免费 | 久久精品国产只有精品2020 | 亚洲成在人线久久综合 | 欧美精品99久久久久久人 | 国产精品毛片久久久久久久 | 精品久久一区二区 | 一区三区三区不卡 | 一二三中文乱码亚洲乱码 | 中文字幕一级毛片 | 色精品一区二区三区 | 亚洲国产综合精品 | 日本一级爽毛片在线看 | 亚洲国产成人va在线观看网址 | 国产精品尹人在线观看免费 | 男人天堂视频在线观看 | 亚洲国产欧洲精品路线久久 | 欧美色老头oldvideo | 国产免费自拍 | 欧美一区二区三区激情视频 | 欧美一区不卡二区不卡三区 | 香蕉97碰碰视频免费 | 国产女人伦码一区二区三区不卡 | 成人欧美精品久久久久影院 | 欧美一区二区亚洲 | 亚洲成人777| 国产欧美日韩精品一区二区三区 | 亚洲网站免费观看 | 久久国产精品-久久精品 | 成年人网站在线观看免费 | 久久久免费精品视频 | 狠狠色综合网站久久久久久久 | 亚洲国产成人在线 | 男人的天堂视频在线观看 | 精品伊人久久久久网站 | 久草视频中文在线 | 亚洲国产成人最新精品资源 | 国产日韩欧美久久久 |