《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 一種基于SSD與FRN相結合的密集連接行人檢測算法
一種基于SSD與FRN相結合的密集連接行人檢測算法
2020年信息技術與網絡安全第12期
馮婷婷,葛華勇,孫家慧
東華大學 信息科學與技術學院,上海201620
摘要: 現實場景行人的復雜性和多樣性使得行人檢測成為計算機視覺領域中一個既具有研究價值又極具挑戰性的熱門課題,為提高其準確性,提出一種基于SSD(Single Shot Multibox Detector)與FRN(Filter Response Normalization)相結合的密集連接行人檢測算法,將串聯式的SSD基礎網絡修改為引入上下文語義信息的多層融合的密集連接的FRN網絡結構,運用聚類思想設置適宜行人尺度的候選框,并且根據行人尺寸的統計分布規律調整不同檢測層的縮放因子,從而實現端到端訓練。在融合數據集和VOC2007TEST數據集上驗證該模型的性能,相比于SSD方法,該方法準確率AP(Average Precision)分別提高5.8%、2.9%,具有更高的準確性和魯棒性。
中圖分類號: TP301.6
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.12.010
引用格式: 馮婷婷,葛華勇,孫家慧. 一種基于SSD與FRN相結合的密集連接行人檢測算法[J].信息技術與網絡安全,2020,39(12):56-60,66.
A densely connected pedestrian detection algorithm based on the combination of SSD and FRN
Feng Tingting,Ge Huayong,Sun Jiahui
School of Information Science and Technology,Donghua University,Shanghai 201620,China
Abstract: The complexity and diversity of pedestrians in real scenes make pedestrian detection a hot topic with both research value and challenge in the field of computer vision. In order to improve its accuracy, this paper proposes a densely connected pedestrian detection algorithm based on the combination of SSD and FRN, modifies the serial SSD basic network into a multi-layered densely-connected FRN network structure that introduces contextual semantic information, and uses clustering ideas to set candidate boxes suitable for pedestrian scale, and adjusts the scaling factors of different detection layers according to the statistical distribution law of pedestrian size, so as to achieve end-to-end training. The performance of the model is verified on the fusion dataset and the VOC2007TEST dataset. Compared with the SSD method, the accuracy of the method AP is improved by 5.8% and 2.9% respectively, with higher accuracy and robustness.
Key words : pedestrian detection;dense connection;clustering algorithm;SSD;FRN

0 引言

    行人檢測作為計算機視覺技術的重要分支和智能化產品的核心技術,受到了學術界和工業界的廣泛關注,其能夠從圖像或視頻中識別出行人,并給出其具體的位置,在車輛輔助駕駛和行人重識別技術等方面有巨大的研究價值和應用前景。行人檢測作為車輛輔助駕駛技術中不可或缺的一部分,可以及時檢測出車輛前方的行人并針對實際狀況及時提醒司機或者緊急制動,從而避免交通事故的發生;在刑偵工作中,刑偵人員經常要瀏覽多個攝像頭中的視頻,此時先進行行人檢測判斷視頻中是否存在行人,把視頻中的行人篩選出來,再利用行人重識別技術查找某個特定的行人在哪些攝像頭曾經出現過,可為刑偵工作帶來便利。

    近十幾年間,基于深度學習的行人檢測技術取得了巨大進步,能夠自動學習從圖像像素中提取的基于邊緣的低級特征和基于語義信息的高級特征。其分為兩階段檢測算法和單階段檢測算法。在兩階段檢測算法中,文獻[1]提出了基于區域的卷積神經網絡(Region based Convolutional Neural Network,R-CNN),文獻[2]提出了空間金字塔池化(Spatial Pyramid Pooling,SPP)網絡,文獻[3]提出了快速基于區域的卷積網絡方法(Fast-RCNN),文獻[4-5]提出了Faster-RCNN。這些目標檢測算法的訓練過程步驟繁瑣,檢測速度慢,沒有達到實時的檢測標準。基于此,以REDMON J[6]提出的統一實時目標檢測框架(You only look once,Yolo)和以Liu Wei[7]提出的單階段多尺度檢測器(Single Shot MultiBox Detector,SSD)框架為代表的單階段檢測算法由此產生。Yolo存在定位精度、召回率等較低的問題,泛化能力相對較弱,為了解決該算法的缺陷,2016年Liu Wei等提出SSD算法進行多尺度檢測,在保證速度的同時提高了檢測精度,但是其對于小目標檢測不精準,加之在實際生活中,由于行人穿著、姿態、尺度、視角、光照和復雜背景等多方面原因,在檢測精度及速度方面的提高仍是研究重點。由此針對行人多尺度問題,本文提出一種FRN提升模型性能的密集連接的SSD行人檢測算法,嘗試引入不依賴批尺寸大小的上下文語義信息的多層特征融合的密集連接網絡結構,結合行人檢測任務特點進行優化與改進。




本文詳細內容請下載:http://www.rjjo.cn/resource/share/2000003230




作者信息:

馮婷婷,葛華勇,孫家慧

(東華大學 信息科學與技術學院,上海201620)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产三级在线免费 | 一区二区三区四区在线免费观看 | 久久久久久久久久毛片精品美女 | 在线观看视频国产 | 欧美在线高清视频播放免费 | 欧美国产永久免费看片 | 女人张开腿等男人桶免费视频 | 免费看一级欧美毛片视频 | 欧美日韩一级二级三级 | 真正国产乱子伦高清对白 | 男女一级 | 久久99国产精一区二区三区! | 一区二区三区在线观看免费 | 国产91精品久久久久999 | 成人韩免费网站 | 日韩亚洲欧美一区噜噜噜 | 精品国产精品a | 男人的天堂网在线 | 国产在线观看精品一区二区三区91 | 日本特黄特色大片免费看 | 国产精品成久久久久三级 | 国产成人黄网址在线视频 | 成年网在线观看免费观看网址 | 免费国产一区二区在免费观看 | 俄罗斯极品美女毛片免费播放 | 三上悠亚免费一区二区在线 | 中国黄色一级毛片 | 精品欧美一区二区在线观看欧美熟 | 国产精品线在线精品 | 97视频免费播放观看在线视频 | 亚洲看黄 | 自拍视频在线观看视频精品 | 88av视频在线 | 台湾精品视频在线播放 | 亚欧美 | 一级一级特黄女人精品毛片 | 成人亚洲网 | 亚洲国产欧美在线人成精品一区二区 | 欧美不卡一区二区三区 | 欧美一区二区aa大片 | 国产高清精品在线 |