《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 安全類文章的多文本分類系統的設計與實現
安全類文章的多文本分類系統的設計與實現
《信息技術與網絡安全》2020年第7期
吳習沫,朱廣宇,張 雷
華北計算機系統工程研究所,北京100083
摘要: 目前安全類網站信息的分類標簽各不相同,沒有統一分類標準,使安全類網站無法準確地向用戶展示特定類別的安全信息。面對大量的安全類網站的技術類文章信息,用戶需要花費大量的時間來識別文本類別。因此,設計一個多文本分類系統對于提高安全類網站的用戶體驗和使用效率具有重要意義。開發了一套基于CNN和LSTM混合模型的安全類文章多文本分類系統,本系統采用基于Scrapy框架的網絡爬蟲,該網絡爬蟲支持定制化配置提取不同布局的頁面數據,支持數據持久化存儲。并在 CNN和 LSTM混合模型基礎上設計實現了多文本自動標注模塊,實現了網站安全類信息的自動分類,相對傳統的CNN和LSTM模型分類準確率分別提升1.79%和1.54%,F1值分別提升1.02%和0.32%。
中圖分類號: TP391.1
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.07.009
引用格式: 吳習沫,朱廣宇,張雷. 安全類文章的多文本分類系統的設計與實現[J].信息技術與網絡安全,2020,
39(7):52-56,60.
Design and implementation of multi-text classification system for security articles
Wu Ximo,Zhu Guangyu,Zhang Lei
North China Institute of Computer Systems Engineering,Beijing 100083,China
Abstract: At present, the classification labels of security website information are different, and there is no unified classification standard, so that security websites cannot accurately display specific types of security information to users. Faced with a large number of technical article information of security websites, users need to spend a lot of time to identify text categories. So, it′s significant to design a multi-text classification system to advance the user experience and make use of security websites′ efficiency. This paper develops a security text multi-text classification system based on a hybrid model of CNN and LSTM. Based on the Scrapy framework, a web crawler, which supports both customized configuration to extract page data in different layouts and data persistence storage, is used in this system. Based on the mixed model of CNN and LSTM, a multi-text automatic labeling module is designed and implemented to realize the automatic classification of website security information. The rate of classification accuracy has increased by 1.79% and 1.54% in comparison with the traditional CNN and LSTM models respectively. Meanwhile,the F1 value has increased by 1.02% and 0.32%.
Key words : in-depth learning;text categorization;crawler;system

互聯網已成為信息傳播的普遍途徑,然而,由于互聯網中的冗余信息過多,各網站提供的標簽沒有統一的分類標準,使得整合某一特定類的文章信息所消耗的時間成本和人力成本增加。但目前為止,針對網絡安全類網站的技術類文章,還沒有一套系統能夠很好地解決上述對應問題。

為迅速掌握最新的網絡安全信息,本文設計并實現了基于CNN和LSTM混合模型的安全類文章多文本分類系統,該系統從多種來源收集安全類技術文本,并將它們以特定格式匯總,自動標記匯總后的文章內容。就信息收集而言,系統主要采集近一年的安全類技術文本,收集的目標內容主要包括文章內容和網頁自帶的標簽,對于各網站自定義的文章標簽,可作為多標簽的一部分,供用戶參考。安全類文本與普通文本對比需要由多個標簽對其進行標記分類處理。因此安全類文本的分類要難于普通文本分類處理。

面向網絡安全數據高并發的安全類網站,本文設計和實現了信息采集模塊,該模塊主要實現了基于Scrapy框架的分布式爬蟲程序設計,完成了多個安全類網站技術類文章的文本信息數據采集。

本文設計并實現了信息分類模塊,它負責對所獲得的數據進行預處理、文本表示以及文本分類,其中文本分類模塊具體提出了一種基于CNN和LSTM的混合分類模型,它綜合了CNN與LSTM的優點,提高了模型的特征提取能力。實驗結果表明,基于CNN和LSTM的混合分類模型達到了比較高的準確率,CNN和LSTM的混合模型的準確率為91.99%。CNN-LSTM與CNN、LSTM相比分類準確率提高了1.79%和1.54%。



本文詳細內容請下載:http://www.rjjo.cn/resource/share/2000003231

作者信息:

       吳習沫,朱廣宇,張  雷

       (華北計算機系統工程研究所,北京100083)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产欧美视频一区二区三区 | 女人张开腿让男人插 | 午夜在线伦理福利视频 | 日本久操 | 特黄毛片 | va欧美| 三级毛片子| 国产精品拍自在线观看 | 免费无毒| 国产黄色三级三级三级 | 亚洲精品亚洲人成毛片不卡 | 精品久久成人 | 日本 欧美 国产 | 黄色美女网站在线观看 | 一区二区三区网站在线免费线观看 | 亚洲第一毛片 | 99爱视频免费高清在线观看 | 国产激情一区二区三区四区 | 亚洲欧美日韩综合在线一区二区三区 | 日韩欧美二区 | 中文字幕第9页 | 亚洲综合国产一区二区三区 | 亚洲国产精品成人精品软件 | 最新最好看免费毛片基地 | 成人精品视频 | 国产区精品一区二区不卡中文 | 精品亚洲视频在线观看 | 国产欧美另类久久久精品免费 | 色悠久久久久综合网伊人男男 | 99精选视频 | 久久亚洲精品视频 | 精品在线网站 | 日本在线观看免费视频 | 韩日一级视频 | 国产香蕉影视院 | 久久久久久a亚洲欧洲aⅴ | 精品手机在线视频 | 日本b站一卡二卡乱码入口 日本s色大片在线观看 | 精品一区二区三区波多野结衣 | 99在线小视频 | 手机看片自拍自自拍日韩免费 |