《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于差量特征與AdaBoost的家用負荷識別方法研究
基于差量特征與AdaBoost的家用負荷識別方法研究
信息技術與網絡安全 3期
王巖俊1,蔡高琰2,駱德漢1,梁炳基2
(1.廣東工業大學 信息工程學院,廣東 廣州510006;2.廣東浩迪創新科技有限公司,廣東 佛山528200)
摘要: 針對家用負荷提出了一種使用智能電表進行數據采集的非侵入式負荷在線識別方法。該方法使用智能電表計算出負荷的差量特征向量預先建立特征庫,訓練以決策樹作為弱分類器的AdaBoost分類器模型,利用負荷投切時電表的告警信息中包含的特征向量進行分類以實現負荷在線識別,實時性好且提高了單一決策樹模型的識別效果。實驗結果證明了該方法的可行性,實現了負荷使用信息的獲取,具有較好的實際應用價值。
中圖分類號: TP391.4
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2022.03.013
引用格式: 王巖俊,蔡高琰,駱德漢,等. 基于差量特征與AdaBoost的家用負荷識別方法研究[J].信息技術與網絡安全,2022,41(3):78-82.
Research on household load identification method based on difference features and AdaBoost
Wang Yanjun1,Cai Gaoyan2,Luo Dehan1,Liang Bingji2
(1.School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China; 2.Hodi Technology Co.,Ltd.,Foshan 528200,China)
Abstract: Aiming at household load, a non-intrusive online load identification method using smart meters for data collection is proposed. This method uses the smart meter to calculate the difference feature vector of the load to build a feature library in advance, trains the AdaBoost classifier model which takes the decision tree as the weak classifier, and uses the feature vector contained in the alarm information of the smart meter when the load is switched to classify the load,and to achieve load online recognition. This method has good real-time performance and improves the recognition effect of a single decision tree model. The experimental results show that the proposed method is feasible,and realizes the acquisition of load usage information, has good practical application value.
Key words : non-intrusive load identification;smart meter;difference feature;adaptive boosting(AdaBoost)

0 引言

隨著智能電網的進一步發展,如何獲知電力用戶的具體用電行為,實現用電信息的大數據挖掘及為電能需求側管理提供技術支撐成為重要的研究方向。即配電網通過獲知電能用戶的日常用電行為和電能消耗情況,使其能精細化調配電能及合理引導用戶參與到節能減排中來,從而實現高效合理的需求側管理[1]及電力信息大數據應用[2],對建設綠色、生態、共享的經濟具有重大意義。

實現獲取用戶具體用電行為的技術稱為負荷辨識技術,也稱為負荷識別,分為侵入式和非侵入式兩種[3]。侵入式負荷識別技術需要在用戶的房屋內部對每一個感興趣的負荷安裝專門的監測設備,優點是易于實現,缺點是隨著要監測的負荷類別及數量增多,所需的監測設備安裝維護成本也會急劇上升,且會對用戶的日常使用造成干擾;與之相對,非侵入式負荷識別技術通過采集電力線入戶端的電參數并進行特征提取,使用聚類分析[4-7]、人工神經網絡[8-10]、K近鄰[11]、核支持向量機[12-13]或它們的結合等算法進行負荷識別,無需安裝專門的監測設備。




本文詳細內容請下載:http://www.rjjo.cn/resource/share/2000004030






作者信息:

王巖俊1,蔡高琰2,駱德漢1,梁炳基2

(1.廣東工業大學 信息工程學院,廣東 廣州510006;2.廣東浩迪創新科技有限公司,廣東 佛山528200)




微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 91精品人成在线观看 | 国产不卡在线播放 | 孕妇xxxx视频在线 | 国产精品自拍亚洲 | 日韩精品视频免费在线观看 | a免费网站 | 香蕉亚洲精品一区二区 | 国产成人精品精品欧美 | 九九黄色影院 | 深夜福利视频在线观看 | 午夜精品视频 | 神马午夜-午夜片 | 国产午夜永久福利视频在线观看 | 91精品国产福利尤物免费 | 男女视频免费看 | 久久久国产精品视频 | 欧美日韩精品在线视频 | 国产在线播放成人免费 | 欧美性色生活片天天看99 | 欧美三级欧美成人高清www | 欧美色视频日本片高清在线观看 | 一级成人a免费视频 | 国产91精品高清一区二区三区 | 玖玖啪| 成在线人视频免费视频 | 久久精品国产精品亚洲20 | 国产精品久久在线 | 国产一区二区精品在线观看 | 牛牛a级毛片在线播放 | 91精品国产91热久久久久福利 | 92av在线 | 亚洲美女性视频 | 黄色毛片视频校园交易 | 三级网站视频在线观看 | 欧美一级日韩一级 | 亚洲欧美人妖另类激情综合区 | 成人a毛片免费视频观看 | 成人性色生活片免费网 | 视频一区二区三区自拍 | 欧美日韩在线观看视频 | 九九成人 |