《電子技術應用》
您所在的位置:首頁 > 其他 > 業界動態 > 降低碳化硅牽引逆變器的功率損耗和散熱

降低碳化硅牽引逆變器的功率損耗和散熱

2023-02-28
來源:電子發燒友網

  隨著電動汽車 (EV) 制造商之間在開發成本更低、行駛里程更長的車型方面的競爭日益激烈,電力系統工程師面臨著減少功率損耗和提高牽引逆變器系統效率的壓力,這可以提高行駛里程并提供競爭優勢。效率與較低的功率損耗有關,這會影響熱性能,進而影響系統重量、尺寸和成本。隨著具有更高功率水平的逆變器的開發,減少功率損耗的需求將繼續存在,特別是隨著每輛車電機數量的增加以及卡車向純電動汽車的遷移。

  牽引逆變器傳統上使用絕緣柵雙極晶體管(IGBT)。但隨著半導體技術的進步,碳化硅 (SiC) 金屬氧化物半導體場效應晶體管 (MOSFET) 能夠以比 IGBT 更高的頻率進行開關,通過降低電阻和開關損耗來提高效率,同時提高功率和電流密度。在電動汽車牽引逆變器中驅動 SiC MOSFET,尤其是在功率水平 >100 kW 和 800V 總線下,需要具有可靠隔離技術、高驅動強度以及故障監控和保護功能的隔離式柵極驅動器。

  牽引逆變器系統中的隔離式柵極驅動器

  圖1所示的隔離式柵極驅動器集成電路(IC)是牽引逆變器供電解決方案的組成部分。柵極驅動器提供低到高壓(輸入到輸出)電流隔離,驅動基于 SiC 或 IGBT 的三相電機半橋的高側和低側功率級,并能夠監控和保護各種故障情況。

  

1.png

  圖1:電動汽車牽引逆變器框圖

  碳化硅 MOSFET 米勒平臺和高強度柵極驅動器的優勢

  特別是對于SiC MOSFET,柵極驅動器IC必須將開關和傳導損耗(包括導通和關斷能量)降至最低。MOSFET數據手冊包括柵極電荷特性,在該曲線上,您會發現一個平坦的水平部分,稱為米勒平臺,如圖2所示。MOSFET在導通和關斷狀態之間花費的時間越長,損失的功率就越多。

  當碳化硅MOSFET開關時,柵源電壓(V一般事務人員) 通過門到源閾值 (V總金),鉗位在米勒平臺電壓(VPLT),并且停留在那里,因為電荷和電容是固定的。讓 MOSFET 開關需要增加或消除足夠的柵極電荷。隔離式柵極驅動器必須以高電流驅動MOSFET柵極,以便增加或消除柵極電荷,以減少功率損耗。公式1計算隔離式柵極驅動器將增加或消除所需的SiC MOSFET電荷,表明MOSFET柵極電流與柵極電荷成正比:

  QGATE = IGATE × tSW (1)

  where IGATE is the isolated gate-driver IC current and tSW is the turnon time of the MOSFET.

  對于 ≥150kW 牽引逆變器應用,隔離式柵極驅動器應具有 >10 A 的驅動強度,以便以高壓擺率將 SiC FET 切換通過米勒平臺,并利用更高的開關頻率。碳化硅場效應晶體管具有較低的反向恢復電荷(QRR)和更穩定的溫度導通電阻(RDS(開啟)),可實現更高的開關速度。MOSFET在米勒高原停留的時間越短,功率損耗和自發熱就越低。

  TI 的 UCC5870-Q1 和 UCC5871-Q1 是高電流、符合 TI 功能安全標準的 30A 柵極驅動器,具有基本或增強隔離和串行外設接口數字總線,用于與微控制器進行故障通信。圖 3 比較了 UCC5870-Q1 和競爭柵極驅動器之間的 SiC MOSFET 導通。UCC5870-Q1 柵極驅動器的峰值為 39 A,并通過米勒平臺保持 30 A 的電流,從而實現更快的導通,這是首選結果。通過比較藍色V,更快的開啟速度也很明顯。門兩個驅動器之間的波形斜坡。在 10 V 的米勒平臺電壓下,UCC5870-Q1 的柵極驅動器電流為 30 A,而競爭器件的柵極驅動器電流為 8 A。

 

2.png

  圖 3:比較 TI 的隔離式柵極驅動器與競爭器件打開 SiC FET 時的比較

  隔離式柵極驅動器的功率損耗貢獻

  柵極驅動器-米勒平臺比較還與柵極驅動器中的開關損耗有關,如圖4所示。在此比較中,驅動器開關損耗差高達0.6 W。這些損耗會導致逆變器的總功率損耗,并加強對大電流柵極驅動器的需求。

  

3.png

  圖 4:柵極驅動器開關損耗與開關頻率的關系

  散熱

  功率損耗會導致溫度升高,由于需要散熱器或更厚的印刷電路板 (PCB) 銅層,可能會使熱管理復雜化。高驅動強度有助于降低柵極驅動器的外殼溫度,從而減少對更昂貴的散熱器或額外的PCB接地層的需求,以降低柵極驅動器的IC溫度。在圖 5 所示的熱圖像中,UCC5870-Q1 的運行溫度降低了 15°C,因為它具有較低的開關損耗和通過米勒平臺的較高驅動電流。

  

4.png

  圖 5:UCC5870-Q1 的散熱與驅動 SiC FET 的競爭柵極驅動器的比較

  結論

  隨著電動汽車牽引逆變器的功率增加到 150 kW 以上,通過米勒平臺選擇具有最大電流強度的隔離式柵極驅動器可以降低 SiC MOSFET 功率損耗,實現更快的開關頻率,從而提高效率,從而改善新的電動汽車型號的驅動范圍。符合 TI 功能安全標準的 UCC5870-Q1 和 UCC5871-Q1 30-A 柵極驅動器附帶大量設計支持工具,可幫助實現。





更多信息可以來這里獲取==>>電子技術應用-AET<<

新聞圖片.jpg


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:[email protected]
主站蜘蛛池模板: 亚洲国产欧美在线成人aaaa | 亚洲欧美在线一区二区 | 深夜爽爽爽gif福利免费 | 国产国产成人人免费影院 | 日韩欧美亚洲国产 | 亚洲国产精品成 | 98国内自拍在线视频 | 玖玖精品在线视频 | 欧美日中文字幕 | 久久精品免观看国产成人 | 国内免费视频成人精品 | 亚洲v视频 | 欧美日韩高清不卡一区二区三区 | 国产成人18黄网站免费 | 国产精品自在自线 | 亚洲黄区| 狠狠88综合久久久久综合网 | 99久久精品国产免看国产一区 | 尤物蜜芽福利国产污在线观看 | 久久久久久久久免费影院 | 久久频这里精品香蕉久久 | 国产a一级毛片含羞草传媒 国产a自拍 | 久久国产经典视频 | 特级a欧美做爰片毛片 | 九九视频在线播放 | 国产精品伦理久久久久 | 视色4setv.com| 国产精品揄拍一区二区久久 | 美女双腿打开让男人桶爽网站 | 精品国产日韩亚洲一区二区 | 手机毛片在线观看 | 久久精品国产精品亚洲艾 | 亚洲国产成人va在线观看网址 | 国产精品亚洲高清一区二区 | 精品久久一区二区三区 | 久久久久久久99精品免费观看 | 7777在线视频 | 好吊妞998视频免费观看在线 | 亚洲日本高清 | 美女视频网站免费播放视 | 日本高清视频www夜色资源 |