《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于動態圖卷積的點云補全網絡
基于動態圖卷積的點云補全網絡
電子技術應用 2023年6期
季建杰1,劉杰2,邵劍飛1,張建華3
(1.昆明理工大學 信息工程與自動化學院,云南 昆明 650504;2.云南警官學院,云南 昆明 650223; 3.云南中勘測繪工程有限公司,云南 昆明 650034)
摘要: 大多數傳統的深度學習點云補全學習方法僅僅使用了全局特征而忽略了局部特征,為了更好地提取和使用點云的局部特征,提出了一個基于深度學習的端到端點云補全網絡。在點云補全網絡(PCN)的基礎上,編碼部分引入針對局部特征改進的動態圖卷積(DGCNN),使用多個不同維度的邊卷積提取較為豐富的局部特征,并按照距離弱化遠點的特征;然后用深度殘差網絡連接的思想優化網絡結構以實現多尺度特征的融合,并加入平均池化彌補全局池化造成的信息損失;在解碼部分引入折疊網絡(FoldingNet),使輸出的點云更加完整。實驗結果表明,該點云補全網絡相對PCN等點云補全網絡有部分提升,驗證了新方法的有效性。
中圖分類號:TP391.41
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223446
中文引用格式: 季建杰,劉杰,邵劍飛,等. 基于動態圖卷積的點云補全網絡[J]. 電子技術應用,2023,49(6):18-23.
英文引用格式: Ji Jianjie,Liu Jie,Shao Jianfei,et al. Point cloud completion network based on dynamic graph convolution[J]. Application of Electronic Technique,2023,49(6):18-23.
Point cloud completion network based on dynamic graph convolution
Ji Jianjie1,Liu Jie2,Shao Jianfei1,Zhang Jianhua3
(1.Faculty of Information Engineering and Automation,Kunming University of Science and Technology, Kunming 650504, China; 2.Yunnan Police College, Kunming 650223,China; 3.Yunnan Zhongkan Surveying and Mapping Engineering Company, Kunming 650034,China)
Abstract: Most traditional deep learning point cloud complement learning methods only use the global features and ignore the local features. In order to better extract and use the local features of point cloud, an end-to-end cloud completion network based on deep learning is proposed in this paper. On the basis of point cloud completion network (PCN), the coding part introduces dynamic graph convolution (DGCNN) improved for local features. The edge convolution of multiple different dimensions is used to extract more abundant local features, and weaken the characteristics of the far point according to the distance. Then the network structure is optimized with the idea of deep residual network connection to achieve the fusion of multi-scale features, and the mean pooling method is added to compensate for the information loss caused by global pooling. In the decoder part, FoldingNet was used to make the output point cloud complete. The experimental results show that the point cloud completion network is partially improved compared with PCN and other point cloud completion networks, which verifies the effectiveness of the new method.
Key words : image processing;3D point cloud;convolutional neural networks;shape completion

0 引 言

近年來,點云作為一種較好的三維形狀表達,廣泛應用于自動駕駛、計算機視覺領域。然而在實際應用中,由于設備分辨率或者存在遮擋等不可避免的原因,捕獲的點云往往是殘缺的,因此,更好地補全缺失點云是現在亟待解決的問題。

基于深度學習的方法處理點云已經取得了諸多進展,PointNet[4]是首次將深度學習應用在點云中,設計了針對點云的特征提取模塊。PointNet++將最遠點采樣和基于半徑的球查詢引入到了點云的特征提取中,用于選定局部區域點云,但這種方法僅僅局限于區域中的單個點,缺少了和其他點的拓撲信息。點云補全網絡(PCN)是直接從點中提取特征,然后通過解碼器輸出完整點云,由于PCN使用的是PointNet的點云特征提取模塊,導致對于局部特征沒有很好地提取。Wang等提出的動態圖卷積神經網絡(DGCNN)對每個輸入點云的點,都計算其K近鄰的點之間的邊特征,從而得到點云的局部特征,有很好的局部特征提取能力。但當輸入的點云較為稀疏時,其K近鄰已不能很好代表周圍的點,且池化方法仍然是最大池化,得到的點云局部特征損失嚴重。




本文詳細內容請下載:http://www.rjjo.cn/resource/share/2000005342




作者信息:

季建杰1,劉杰2,邵劍飛1,張建華3

(1.昆明理工大學 信息工程與自動化學院,云南 昆明 650504;2.云南警官學院,云南 昆明 650223;

3.云南中勘測繪工程有限公司,云南 昆明 650034)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 亚洲欧美韩日 | 看久久 | 国产一区二区fc2ppv在线播放 | 欧美一级视频在线观看欧美 | 日本免费一区二区三区毛片 | 北岛玲亚洲一区在线观看 | 中文一区二区在线观看 | 成人免费视频日本 | 国产精品国产三级国产专区5o | 国产资源精品一区二区免费 | 精品中文字幕一区在线 | 欧美一级永久免费毛片在线 | 一本色道久久88 | 狠狠色丁香九九婷婷综合五月 | 日韩欧美国产精品 | 中文字幕有码视频 | 欧美一级片网站 | 国产一区二区精品在线观看 | 午夜久久影院 | 日韩黄在线观看免费视频 | 99视频有精品视频免费观看 | 日韩欧美一区二区三区免费观看 | 男女国产视频 | 午夜欧美成人香蕉剧场 | 亚洲图片在线视频 | 在线免费观看亚洲视频 | 欧美视频一区二区专区 | 日本美女高清在线观看免费 | 免费国产黄网站在线观看视频 | 成人福利网站在线看视频 | 成人免费的性色视频 | 在线成人免费观看国产精品 | 久久影院yy6080| 成年人免费在线视频网站 | 精品国产一级毛片 | 免费一级毛片在线观看 | 一本高清 | 韩国主播19福利视频在线 | 亚洲免费三级 | 亚洲成在人线免费视频 | 久久久久久久网站 |