具有自主學習與記憶功能的智能政務問答系統研究
電子技術應用
方海泉1,2,鄧明明1
1.浙江工業大學,浙江 杭州 310023;2.浙江大學,浙江 杭州 310058
摘要: 任務型問答系統一旦構建好,通常是固定不變的,能回答的問題非常有限,難以滿足用戶的需求。對此,提出一種自動實時更新知識庫的方法,當用戶提了一個問答系統回答不了的問題,系統會把該問題自動發送給人工客服,人工客服利用專業知識回復后,系統能夠自動實時獲取用戶提的問題和人工客服回復的答案,并把這個問答對自動實時更新到知識庫,之后如果其他用戶提了類似的問題,問答系統就能夠快速給出對應的答案。以政務領域的問答系統為例,應用文本向量化方法ERNIE構建知識庫自動實時更新的問答系統。經過計算機實驗證明,提出的方法能夠實現知識庫自動實時更新,構建的問答系統具有自主學習與記憶功能,提高了任務型問答系統的智能化水平。
中圖分類號:TP391.1 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.234075
中文引用格式: 方海泉,鄧明明. 具有自主學習與記憶功能的智能政務問答系統研究[J]. 電子技術應用,2024,50(1):21-26.
英文引用格式: Fang Haiquan,Deng Mingming. Research on intelligent government question answering system with autonomous learning and memory function[J]. Application of Electronic Technique,2024,50(1):21-26.
中文引用格式: 方海泉,鄧明明. 具有自主學習與記憶功能的智能政務問答系統研究[J]. 電子技術應用,2024,50(1):21-26.
英文引用格式: Fang Haiquan,Deng Mingming. Research on intelligent government question answering system with autonomous learning and memory function[J]. Application of Electronic Technique,2024,50(1):21-26.
Research on intelligent government question answering system with autonomous learning and memory function
Fang Haiquan1,2,Deng Mingming1
1.Zhejiang University of Technology, Hangzhou 310023, China;2.Zhejiang University, Hangzhou 310058, China
Abstract: Once a task-based question answering system is built, it is usually fixed and can answer very limited questions, making it difficult to meet user needs. A method for automatically updating the knowledge base in real-time was proposed. When a user asks a question that the question answering system cannot answer, the system will automatically send the question to the manual customer service. After the manual customer service used professional knowledge to reply, the system can automatically obtain the user's question and the answer replied by the manual customer service in real time, and automatically update the question answering pair to the knowledge base in real time. If other users ask similar questions, the question answering system can quickly provide corresponding to answers. Taking the question answering system in the field of government affairs as an example, the text vectorization method ERNIE was applied to build a question answering system that automatically updates the knowledge base in real time. After computer experiments, it has been proven that the proposed method can achieve automatic real-time updates of the knowledge base, and the constructed question answering system has autonomous learning and memory functions, improving the intelligence level of the task-based question answering system.
Key words : question answering system;autonomous learning;memory function;knowledge base;automatic real-time updates
引言
問答系統可以滿足用戶快速、準確查找信息的需求,在政務、電商、教育、金融等領域得到廣泛應用[1-8]。以問答系統在政務上的應用為例,如:“浙江省民呼我為統一平臺”的智能問答系統,以及杭州12345的智能客服機器人“小杭”,對于公眾辦事或者咨詢問題提供了快速便捷渠道,充分體現了數字技術在政府數字化改革上具有重要的應用價值,可以更好地改善公眾參與[9-10]。但是目前的政務問答系統還處在初步發展階段,用戶很多時候更傾向于選擇人工客服,政務問答系統還有很大的提升空間。從用戶的角度來說,目前的政務問答系統還不夠智能。因此,很有必要對現有的問答系統進行改進。
本文詳細內容請下載:
http://www.rjjo.cn/resource/share/2000005828
作者信息:
方海泉1,2,鄧明明1
(1.浙江工業大學,浙江 杭州 310023;2.浙江大學,浙江 杭州 310058)
此內容為AET網站原創,未經授權禁止轉載。