《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于GRU-FedAdam的工業物聯網入侵檢測方法
基于GRU-FedAdam的工業物聯網入侵檢測方法
網絡安全與數據治理
謝承宗,王禹賀,王佰多,李世明
(哈爾濱師范大學 計算機科學與信息工程學院,黑龍江哈爾濱150025)
摘要: 針對工業物聯網中的入侵檢測存在數據隱私泄露和訓練時間長的問題,提出一種基于GRU-FedAdam的入侵檢測方法。該方法首先采用聯邦學習協作訓練入侵檢測模型,保護客戶端數據隱私;其次,構建基于門控循環單元(GRU)的入侵檢測模型并采用Adam優化算法,提高客戶端模型的訓練速度。選用TON_IoT數據集為實驗數據,經過兩輪通信輪次計算,訓練時間比單層LSTM模型減少4 s;利用Adam算法訓練模型比SGD算法收斂速度更快,入侵檢測模型準確率為0.99。實驗結果表明,基于GRU-FedAdam的入侵檢測方法在保護數據隱私的情況下,可減少訓練時間和獲得更好的入侵檢測效果。
中圖分類號:TP393文獻標識碼:ADOI: 10.19358/j.issn.2097-1788.2024.02.002
引用格式:謝承宗,王禹賀,王佰多,等.基于GRU-FedAdam的工業物聯網入侵檢測方法[J].網絡安全與數據治理,2024,43(2):9-15.
The intrusion detection method for IIoT based on GRU-Fed
AdamXie Chengzong,Wang Yuhe,Wang Baiduo,Li Shiming
College of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China
Abstract: Aiming at the problems of data privacy leakage and long training time of intrusion detection methods in Industrial Internet of Things, this paper proposes an intrusion detection method based on GRU-FedAdam. The method firstly adopts federated learning to collaboratively train the intrusion detection model to protect the client data privacy, secondly adopts an intrusion detection model based on the gated recurrent unit (GRU) and Adam optimization algorithm to increase the training speed of the client model. In this paper, the TON_IoT dataset is selected as the experimental data, and the training time is reduced by 4 s compared with the single layer LSTM model after two communication rounds of computation; the training model using Adam algorithm converges faster than the SGD algorithm, and the accuracy of the intrusion detection model reaches 0.99. Experimental results show that the intrusion detection method based on GRU-FedAdam can effectively reduce training time and achieve superior intrusion detection performance while preserving data privacy.
Key words : Industrial Internet of Things; intrusion detection; GRU; federated learning

引言

工業物聯網(Industrial Internet of Things, IIoT)能夠利用智能化生產與管理來提高生產和管理效率,降低資源消耗,其應用行業眾多(如制造、物流、運輸、石油、天然氣、公用事業和航空等),然而卻存在易受網絡攻擊等問題[1]。入侵檢測系統(Intrusion Detection System,IDS)可監測網絡流量中疑似攻擊行為,成為提升IIoT的防御能力的關鍵技術之一[2]。人工智能中的深度學習算法可從大量數據中學習和提取復雜特征,所以被人們用于入侵檢測并成為研究熱點[3-5]。然而,基于深度學習的入侵檢測模型結構越來越復雜,如文獻[6-7]的CNN+LSTM組合模型,文獻[8]的CNN和雙層GRU的組合模型等,這些模型的訓練時間都很長。此外,大多數基于深度學習的入侵檢測系統部署屬于集中式,該模式下服務器接收并利用不同客戶端傳來的數據進行訓練入侵檢測模型,然后再部署已訓練完成的模型到客戶端設備上[9],此過程存在隱私泄露等問題[10]。聯邦學習(Federated Learning,FL)是由McMahan等[11]于2016年提出的一種協作學習方法,該方法在本地設備上利用本地數據集訓練共享模型,服務器只聚合更新后的本地模型參數,此過程中聯邦學習不傳輸用戶敏感數據,故保護了用戶隱私,從而被逐漸應用到入侵檢測技術中。然而,基于聯邦學習的入侵檢測方法[12-14]通常會使用隨機梯度下降算法(Stochastic Gradient Descent,SGD)來優化本地模型的參數,導致出現模型的訓練收斂速度慢和檢測效率低等問題。


作者信息:

謝承宗,王禹賀,王佰多,李世明

(哈爾濱師范大學 計算機科學與信息工程學院,黑龍江哈爾濱150025)


文章下載地址:http://www.rjjo.cn/resource/share/2000005896


weidian.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 日本欧美韩国一区二区三区 | 国产高清自拍一区 | 国产成人咱精品视频免费网站 | 国产看色免费 | 欧美日韩亚洲国内综合网俺 | 亚欧成人中文字幕一区 | 手机看片精品国产福利盒子 | 欧美一级毛片欧美一级无片 | 欧美国产一区二区三区 | 99爱视频在线 | 特黄特色一级特色大片中文 | 久色福利| 福利社在线| 性生活视频网 | 91久久精品国产免费一区 | 美美女高清毛片视频黄的一免费 | 成人做爰视频www网站 | 国产精品国产精品国产三级普 | 国产黄a三级三级看三级 | 俺来也俺来也天天夜夜视频 | 日本在线观看免费看片 | 久久影院一区二区三区 | 国产视频一区二区三区四区 | 精品在线观看国产 | 中文字幕日韩国产 | 一色屋成人免费精品网站 | 国产精品久久久久久久免费 | 狠色狠狠色狠狠狠色综合久久 | 毛片69| 波多野结衣视频免费观看 | 91在线免费公开视频 | 成人国产永久福利看片 | 美女免费在线视频 | 久久观看视频 | 欧美一级二级片 | 99久女女精品视频在线观看 | 性盈盈影院影院67194 | 99视频在线观看免费视频 | 欧美刺激午夜性久久久久久久 | 国产精选在线播放 | 亚洲欧美一区二区视频 |