安全類文章的多文本分類系統的設計與實現 | |
所屬分類:技術論文 | |
上傳者:muyx | |
文檔大?。?span>568 K | |
標簽: 深度學習 文本分類 爬蟲 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:目前安全類網站信息的分類標簽各不相同,沒有統一分類標準,使安全類網站無法準確地向用戶展示特定類別的安全信息。面對大量的安全類網站的技術類文章信息,用戶需要花費大量的時間來識別文本類別。因此,設計一個多文本分類系統對于提高安全類網站的用戶體驗和使用效率具有重要意義。開發了一套基于CNN和LSTM混合模型的安全類文章多文本分類系統,本系統采用基于Scrapy框架的網絡爬蟲,該網絡爬蟲支持定制化配置提取不同布局的頁面數據,支持數據持久化存儲。并在 CNN和 LSTM混合模型基礎上設計實現了多文本自動標注模塊,實現了網站安全類信息的自動分類,相對傳統的CNN和LSTM模型分類準確率分別提升1.79%和1.54%,F1值分別提升1.02%和0.32%。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2