基于生成對抗網絡的小樣本圖像數據增強技術 | |
所屬分類:技術論文 | |
上傳者:zhoubin333 | |
文檔大小:2988 K | |
標簽: 生成對抗網絡 數據增廣 圖像分類 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:基于生成對抗網絡(GANs)的圖像數據增強方法在近年來展現出了巨大的潛力。然而生成高分辨率、高保真圖像通常需要大量訓練數據,這和缺乏訓練數據的現狀背道而馳。為解決這一問題,提出了一種能夠在小樣本、高分辨率圖像數據集上穩定訓練的條件生成對抗網絡模型,并且將該模型用于數據增強。實驗結果表明,在基準數據集上,該模型與當前最新模型相比能夠生成更加逼真的圖像并取得了最低的FID值;在圖像分類任務中使用其進行數據增強能夠有效緩解分類器的過擬合問題。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2